Суперинжекция там, где её не ждали

    Эту статью могут комментировать только участники сообщества.
    Вы можете вступить в сообщество одним кликом по кнопке справа.
    Волжский дед написал
    5 оценок, 348 просмотров Обсудить (16)

    Исследователи из МФТИ открыли в полупроводниках эффект, считавшийся раньше невозможным.

    Так называемый эффект суперинжекции является основой современных лазеров и светодиодов. Однако до настоящего момента считалось, что он возможен только в гетероструктурах, состоящих из двух и более полупроводниковых материалов.

     

    Физики из МФТИ обнаружили, что суперинжекция возможна и в гомоструктурах, то есть достаточно иметь лишь один материал. Это открывает принципиально новые возможности в создании световых источников. Работа опубликована в журнале Semiconductor Science and Technology.

    Полупроводниковые источники света, такие как светодиоды или лазеры, являются основой современной техники. Благодаря им мы можем печатать на принтере и пользоваться высокоскоростным интернетом. Но еще более полувека назад нельзя было и представить, что возможно создавать яркие источники света на основе полупроводников.

    Дело в том, что в таких устройствах свет генерируется во время рекомбинации электронов и дырок — основных носителей заряда в любом полупроводнике. Чем выше концентрации электронов и дырок, тем чаще они рекомбинируют и тем ярче светит источник света. Однако длительное время в изготавливаемых полупроводниковых приборах не удавалось получить достаточно высокой концентрации одновременно и электронов, и дырок. Решение проблемы в 60-е годы нашли Жорес Алферов и Герберт Кремер. Они предложили создавать полупроводниковые источники света не на основе одного материала, а на основе гетероструктур — «бутерброда» из двух и более специально подобранных полупроводников.

    Если разместить полупроводник с меньшей шириной запрещенной зоны между двумя полупроводниками с большей шириной запрещенной зоны, то при пропускании тока через такую структуру в центральном полупроводнике можно создать концентрацию электронов и дырок на несколько порядков выше, чем в окружающих полупроводниках. Этот эффект, названный суперинжекцией, является основой современных светодиодов и лазеров. За эти работы Алферов и Кремер получили Нобелевскую премию по физике в 2000 году.

    Главным недостатком гетероструктур является то, что не любые два полупроводника можно cоединить в одну гетероструктуру. Если у полупроводников не будут совпадать периоды кристаллических решеток, это приведет к возникновению большого числа дефектов на поверхности между полупроводниками, и полученный источник света не будет светить. Это подобно попытке накрутить на болт гайку с другим шагом резьбы. Вряд ли это получится сделать, не повредив резьбу. В то же время гомоструктуры состоят из материала одного типа, а значит, одна часть устройства является естественным продолжением другой.

    Несмотря на это удобство, считалось, что суперинжекция в гомоструктурах невозможна, следовательно, на их основе нельзя создавать сколь-либо яркие источники света. Игорь Храмцов и Дмитрий Федянин из лаборатории нанооптики и плазмоники Центра фотоники и двумерных материалов МФТИ сделали открытие, позволяющее кардинальным образом изменить взгляд на принципы построения светоизлучающих устройств.

    Они выяснили, что для достижения суперинжекции достаточно использовать лишь один материал, причем можно использовать большинство известных полупроводников. «Если в случае кремния и германия для суперинжекции требуются криогенные температуры, что ставит под вопрос ценность этого эффекта, то в таких материалах, как алмаз и нитрид галлия сильная суперинжекция может наблюдаться уже при комнатной температуре», — отмечает Дмитрий Федянин. Это означает, что данный эффект можно использовать в создании устройств для массового рынка.

    Согласно опубликованной статье, суперинжекция в алмазном диоде позволяет превзойти предел максимальной, как ранее считалось, концентрации электронов в алмазе в 10 000 раз. Таким образом, на основе алмаза можно создать, например, ультрафиолетовые светодиоды, которые будут в тысячи раз ярче, чем предсказывали самые оптимистичные теоретические расчеты, выполненные ранее. «Удивительно, но эффект суперинжекции в алмазе в 50–100 раз сильнее того, который сегодня используется в большинстве полупроводниковых светодиодов и лазеров на основе гетероструктур», — подчеркивает Игорь Храмцов.

    Благодаря тому, что суперинжекция может наблюдаться в гомоструктурах на основе многих полупроводниковых материалов, начиная от хорошо известных нитрида галлия и карбида кремния и заканчивается недавно открытыми двумерными материалами, этот эффект открывает новые возможности для создания высокоэффективных синих, фиолетовых, ультрафиолетовых и белых светодиодов; источников излучения для оптической передачи данных по воздуху (Li-Fi); новых видов лазеров; передатчиков для квантового интернета; а также оптических устройств для ранней диагностики заболеваний.

    Исследование поддержано грантом Российского научного фонда.

     

    Источник: Пресс-служба МФТИ

    Комментировать

    осталось 1185 символов
    пользователи оставили 16 комментариев , вы можете свернуть их
    Сергей Викулов # написал комментарий 2 апреля 2019, 20:20
    Любопытно вот, что. За диапазоном электромагнитных волн ультрафиолета и до самых рентгеновских находится зона совершенно неиследованая. Нет ни источников этих волн, ни приемных структур. Понятно, что о них нет никакого представления, не известны ни их свойства, их физические проявления. Но, ведь, они должны существовать, по крайней мере это было бы логично. В 70-х годах этой темы касались в научно-популярных журналах, были попытки выйти на исследования в этой области, но так, похоже, они ни к чему не привели.
    Олег Сазонов # ответил на комментарий Сергей Викулов 3 апреля 2019, 17:38
    Источники рентгена и гамма-излучений давно известны, эти диапазоны исследованы и широко применяются.
    Леонид Андреич # ответил на комментарий Олег Сазонов 4 апреля 2019, 05:46
    Про гамма-источники не скажу так вот сразу.. а источники рентгена страдают очень малым КПД.. и, похоже, здесь есть над чем подумать !
    Олег Сазонов # ответил на комментарий Леонид Андреич 4 апреля 2019, 18:13
    Это хорошо, что рентгеновские источники имеют малый КПД и большой вес. Иначе у военных уже было бы мерзкое оружие, которое тебя убивает без твоего ведома.
    Леонид Андреич # ответил на комментарий Олег Сазонов 7 апреля 2019, 06:01
    - Любое оружие убивает тебя без твоего ведома.. кроме гильотины, конешно..
    Олег Сазонов # ответил на комментарий Леонид Андреич 7 апреля 2019, 12:58
    Гильотина - это не оружие, как и виселица.

    Холодное и стрелковое оружие убивает тебя с твоего ведома - оно бумкает, сверкает, причиняет боль и т.п.

    Кстати о птичках - цифровые фотоаппараты и видеокамеры тоже умеет снимать без ведома, но производитель предохраняет снимаемого от этого имитируя звук механического затвора фотоаппарата или включая красный огонек на видеокамере.
    Сергей MadeInVoronezh # ответил на комментарий Олег Сазонов 7 апреля 2019, 21:22
    Снайпер снимет с 3 км и человек даже не успеет понять, что его убили. Звук затвора можно отключать в цифровых камерах.
    Олег Сазонов # ответил на комментарий Сергей MadeInVoronezh 7 апреля 2019, 22:04
    Гильотен тоже считал, что не успевает понять и что-то почувствовать, как и изобретатель электрического стула.
    Однако, прямых свидетельств от умерщвленных пока не поступало.

    Красный огонек тоже можно отключить или заклеить. Меня умиляет, что в кино даже бомбы всегда мигают огоньком... Хотя я, как сапер, знающие все отечественные и зарубежные мины, никогда о таком не слышал.
    Леонид Андреич # написал комментарий 4 апреля 2019, 05:44
    "Суперинжекция в алмазном диоде позволяет превзойти предел максимальной, как ранее считалось, концентрации электронов в алмазе в 10 000 раз"..
    Хм, но алмаз свободных электронов ваще не содержит.. это изолятор..
    Каковы абсолютные цифры, хотелось бы увидеть.. и что-то мне подсказывает, что они много меньше концентраций зарядов в полупроводниках..
    ..И лазерные светодиоды, с 150 - 200 люмен/вт - это таки достаточно круто для сегодняшнего дня !
    Олег Сазонов # ответил на комментарий Леонид Андреич 4 апреля 2019, 18:16
    Проводимость полупроводников имеет примесный характер.

    Дайте ссылочку на светодиоды 150 люмен на ватт.
    Леонид Андреич # ответил на комментарий Олег Сазонов 7 апреля 2019, 06:02
    - Посмотрите в гугле лазерные LED
    • Регистрация
    • Вход
    Ваш комментарий сохранен, но пока скрыт.
    Войдите или зарегистрируйтесь для того, чтобы Ваш комментарий стал видимым для всех.
    Код с картинки
    Я согласен
    Код с картинки
      Забыли пароль?
    ×

    Напоминание пароля

    Хотите зарегистрироваться?
    За сутки посетители оставили 560 записей в блогах и 4747 комментариев.
    Зарегистрировалось 187 новых макспаркеров. Теперь нас 5029540.
    X